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We give the Lagranglan of a system of moving charged particles up to the 
fourth approximation in l /c  neglecting dipole radiation of the system. In this 
ease the appearance of the electromagnetic waves (quadrupole radiation) by 
moving charges occurs in the fifth approximation in 1/c. 

1. I N T R O D U C T I O N  

We consider a system of n massive charged particles moving relative 
to each other under the influence of their mutual  Coulomb force. The term 
"particle" means that the mass and charge are concentrated at a point in 
space. The Lagrangian for the case of charged particles depending on the 
coordinates 6( t )  describing the system and in the usual simplest case on 
the velocities 6/, was first derived relativistically by Darwin (1920). Gener-  
ally we can expand the Lagrangian into a power series with respect to 1 / c  
(Breitenberger, 1968; Landau and Lifshitz, 1970) as 

L = L ~ ~  O(c - s )  (1.1) 

where the radiation of electromagnetic waves occurs in the third order in 
1/c .  The symbol O(c -3)  means that the remaining terms of equation (1.1) 
are of order 1 / c  a and so on. Nevertheless, in special cases in which the 
ratio of charge to mass is the same, a system of charged particles cannot  
radiate by dipole radiation. The dipole radiation is determined by the 
second derivative of the dipole moment  of the system, that is 

n ~ rt 

d =  i~_ l qi~ -~ qi - - m / ~ = c o n s t  ~ m i ~ = c o n s t  R m i (1.2) 
" f f i  i=l mi  iffil iffil 
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2 ~ s t ~  

where /~ is the position vector of the mass center of the system. From 
equation (1.2) one can take 

d =  const R ~ m,= 0 (1.3) 
i z l  

which means that there is no dipole radiation for a closed system of 
particles, since the center of mass moves uniformily. Hence, we must 
expect to be able to find a Lagrangian accurate beyond the terms O(c-2). 

We can apply the nourelativistic mechanics since the velocities of the 
particles are small, though not negligible, fractions of the velocity of light. 
To get the next approximation, we proceed in the following fashion to find 
the Lagrangian for any number of freely moving interacting particles up to 
the fifth order in 1/c, that is, we write down 

L = L  (o) + L  (2) +L (4) + L  (5) + O(C -6 ) (1.4) 

where L (~ are the lowest-order terms, L (2) are the second-order terms, L (4) 
are the fourth-order terms, and L (5) are the fifth-order terms. It is clear that 
there is a close analogy with the Lagrangian of a system of gravitating 
particles correctly to terms of the fourth and fifth order (Dionysiou, 1976, 
1977). When the Lagrangian for any problem has been found, the transi- 
tion to the Hamiltonian follows in the usual way, and then we have the 
expansion 

H = H (~ + H (2) + H (4) + H 0) + 0 (  c-  6) (1.5) 

Equation (1.5) above is often called the integral of energy of our system, 
since the function H does not involve the time explicitly. 

2. THE LAGRANGIAN 

Starting with the Lagrangian density (Goldstein, 1971) 

E 2 - B  2 1 . 
L= 8----g-- o,p+ 7J .A 

which leads to the field equations 

V .E=4~rp 

V •  (4rrf+ ~-~ ff, ) 

(2.1) 

(2.1 a) 

(2.1b) 
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we get the volume integral of equation (2.1), which is the total Lagrangian 
for the electromagnetic field, that is 

E2-B2 p~+l f..X)dV (2.2) 

where V is the volume of the charged particles system. 
More generally, in special relativity theory, we can write 

t=fv(E2-n2 E mic2(1 1)2/1/2 - "  _ 

(2.3) 

Now for a system which does not emit dipole radiation we get the required 
fourth- and fifth-order terms (Landau and Lifshitz, 1975) from 

1 1_ - ( L(4'5)=-~ fz(eJ.A--pq~)dg- ~mic2 1--~ ] (2.4) 
i=l  

where the first term represents the mutual interactions between particles 
and field, and the second term the Lagrangian for the particles in the 
absence of the field. Hence, we try to obtain the Lagrangian terms of 
higher order than two (Darwin, 1920) and discuss the effects to which 
these terms lead (Golubenkov and Smorodinskii, 1956). Here, we note that 
since the Lagrangian is not associated with a definite mechanical system, it 
does not have to be given as the difference of a kinetic and potential 
energy. 

Suppose a discrete set of point particles with vector positions i].(t) and 
charges qg, then the density function can be represented as 

p(?, t)= ~ qgd(?-~,.(t)) (2.5) i~l 
where the mathematical function 8 is the well-known 8 function introduced 
by Dirac and defined by the conditions 

8 ( r - -  ri) = 0  when ~v~ 

r/ 

fv~(~-6)dV=l, fvPd(r-ri)dg=i~lq i, ff(f)8(e-6)dg=f(6) 
Then we take 

fv[?--6[ x ~ qiS(?-f,.)d?= ~ q ; 1 6 - 6 1  x 
i=l  i=1 

(2.6) 
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where X = 0, +__ 1, _ 2 . . . . .  
The current density f is connected with the charge density p by the 

relation 

J=oe (2.7) 

where 6 is the velocity of the charges and it is a function of position in 
space. 

By virtue of equations (2.5), (2.6), (2.7) the integral of equation (2.4) is 
equal to 

l fv[1 qi (f-6)9 (f)]dV 
= 2 i__~l q; c ~o(~,. (2.8) 

Now, equation (2.4) can be written as 

1 qi~Si.~(~) - 1 2 i (2.9) L(4"5) = 2---c ~ qi~(?i)-  mic 1 - -~ 
i =1  i = l  i = l  

Equation (2.9) gives us the required part of the Lagrangian, which de- 
scribes both the electromagnetic field on the one hand and the mechanical 
motion of the n particles on the other. Now going back to the third-order 
terms we have L(3)=0 (Landau and Lifshitz, 1975). Also, we note that 
there is a close agreement with a purely gravitational case, where L O) = 0 
(Dionysiou, 1976, 1977). We consider the retarded potentials of equation 
(2.9) at the positions ~/since, when several particles are free to move, the 
force exerted by one of them on another depends on its position and 
motion at certain previous time, that is 

7 

q~(fi, t )= ( P(t-R/C) dV A(ri,  t ) =  1 ( J ( t -R /c )  
Jv  a ' c J r - - - - R - - d r  (2.10) 

where R - I l l - f [  is the distance from the volume element dV=-df to the 
"field point" ~ at which we determine the potentials. 

If the motion of the charges is sufficiently slow and smooth (i.e., we 
impose a limitation on the speed of the charge (v 2 <<c2), on its acceleration 
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and_ on higher time derivative), we can expand the functions P(t-a/c) and 
J(t-R/c) in inverse powers of c as 

q ~ = f v R d V _  1 ~_~fvPdV + 1 02 1 03 fvR20d V 
C 2C 2 d V -  6C 3 at 3 

1 a 4 f v  R a S f v  R -~ 3toav, 1 4pdV+O(e-6)  (2.11) 
24c 4 at 4 120c 5 at 5 

where the scalar potential ~ takes the expansion form 

_ ~p(o) + ~p(2) + cp(3) + cp(4) + ~p(5) + O ( c -  6) (2.12) 

In equation (2.11) the time differentiation can clearly be taken out from 
under the integral sign. In equation (2.12) we have cp 0) = 0, since 

f odv=o (2.13) 

where this integral means the total charge of the system and is therefore 
independent of time. Also, the expansion of the vector potential is given by 

x = l f v J d v _  1 a f /  1 a 2 f /  c c 2 at dV+ R dV  2c 3 at 2 

- - -  - -  R 2 d V + O ( c  -5) (2.14) 
6c 4 at 3 

where the time differentiation can clearly be taken out from under the 
integral sign and it has the form 

X=21  +22  +23  + + o(c  -5) (2.15) 

Substituting the expressions (2.11) and (2.14) in the required approxima- 
tion into equation (2.9) we can find the Lagrangian of the fourth and fifth 
order, which must be added to the known second-order Lagrangian 
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(Darwin, 1920; Landau and Lifshitz, 1975), for the whole system as 

1 iqig.__fv]RdZ L (4,5) = - ~  Ot 2 
i=1 

,, 4 1 " ) 
1 ~ q'-~.4 f R3pdV+ miv6 

48 i=1 3t dv -~ i~-_l 

1 ( ~)3 : 
+ ~  - ~--~ ~ qivi'~t3 fvJR 2dV 

i=1 

' 

+ "~'4-"~ i=  l qi-'~t 5 
(2.16) 

where 

, ,=  and 
j = l  

For the fourth-order terms of the Lagrangian the corresponding scalar and 
vector potentials are 

~0(4 ) __ l _ _  ( R 3 p  d V  ( 2 . 1 7 )  
24c 4 at 4 JV 

1_~3) = 1_ a2 s 
C 2 c  4 at--- 2 dV (2.18) 

then since the scalar potential rp is incovenient in our problem because it 
involves not only the velocities ~5 i but also the accelerations vi of the 
charges, which produce the field, we impose the "gauge condition" 

1 ~X 
~'=~- c bt ' A'=A + VX (2.19) 

since the scalar and vector potentials are not independent quantities but 
are connected by this gauge condition (2.19), where X is an arbitrary 
function of space and time coordinates. Furthermore, the V operator 
means differentiation with res__pect to the coordinates of the "field point" at 
which we seek the value of A'. Let us now make use of the function 

X -  1 ~3 f v  g 24c~ Ot 3 30 dV 
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and equations (2.17), (2.18), (2.19), then it follows that 

p,(4) = 0 

and 

- -  R dV+ ,.,.,_4 V~ R3p dV (2.20) l'z~(3)(~') 2C 4 0t 2 24C '0t V 

Putting into equation (2.20), equations (2.5), (2.7) and integrating accord- 
ing to equation (2.6) we get that 

1 -L ~ 2 2 [ _ 

1A'(3) ( ~,. ) = 2 c---~ j~__'l qj ot---~ [ Rvj + --~ ff-~ ( V~ R3 ) ] (2.21) 

where we have put V(O3R/Ot3)=(O3/Ot3)$R. After performing some of 
the differentiations in equation (2.21) i.e., 

<-6 
V~'R3 = 3R2V~'R = 3R2 = 3R2~ 

where R =  ~-~.,  and ~ is the unit vector in the direction of R_ Now, since 
R2= ~-2 it follows, differentiating with respect to ~j, that 

RR--R.R=- .ej 

thus 

- 2 [  1 ~  RR-/~1~ - ~ + ~ ( ~ ' ~ )  
T/=~-~ ~ -~-] = R 2 ---- R 

then equation (2.21) can be written as 

8C 4 ~ q j  3R~j- R~(~,  ~j) ] (2.22) 
j ~  

where we have assumed the differentiation O/Ot is done for a fixed position 
of the "field point" ~, i.e., only with respect to ~; while the differentiation 
V~, is with respect to the coordinates of the "field point" ~. Defining the 
vector 

ffi=O-~.[3R~j.-R~({'6j.)], j =  1,2,3 . . . . .  n (2.23) 
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where O/Ot is with respect to 6 for a fixed position of ?,.; as a result we find 
from equations (2.22), (2.23) that 

c 1 " o f f  -gs_  X qF=- 
8C j= 1 Ot 

(2.24) 

Now, in accordance with equations (2.16), (2.24) the expression for L (4) can 
be written in another form as 

Z ( , )  = 1 qiqj~i" -'~ - + ~ E miv6i 
16c 4 i= 1 j= 1 16c 4 i= 1 

(2.25) 

where i4:j. It is easy to that the total time derivative of 6i" ffj is written by 

d _ m 

-~( vi'Fj')= ~ (  ~i'ff)'~-( ~i'V~i)( ~i~ i=/=j (2.26) 

From equations (2.25), (2.26) one easily obtains a Lagrangian L (4) com- 
pletely describing (in this approximation) the motion of the charges, i.e., 

L(4) _- 
tl n 

1 E E qiqj[--(~i'V~)(~i'ff)--Oi'ff] 
16c 4 i~l j= l  

n 

+ - -  Z miv6i, i=/=j (2.27) 
16c 4 i=1 

The term (d/dt)(6i.ff) can be dropped from the Lagrangian (2.27) as a 
total time derivative. Also, we define 

where 

- 1 0 V  
vi = (2.28) 

mi 0~,. 

1 ~  ~ qiqj 
v=5 1 ,-61' i=l j=l 

i 4=j (2.28a) 

that is to say, the accelerations is equation (2.27) can be expressed from the 
lowest approximation. The combination of equations (1.1) and (2.27) yields 
the complete relativistic Lagrangian up to the fourth order of l/c. 



Relativistic Corrections to l_agraugin 9 

To calculate L (5) it is sufficient to know the potentials 

and 

~(5)= I 05 f :  
120c 5 Ot' 4 0 dV (2.29) 

!A-~4).~. 1 23 f :  
c 6c 50t 3 2jdV (2.30) 

from equations (2.11) and (2.14). Choosing the function 

X =  1 0 4 f:4pd V 
120c 4 0 t  4 

then from equations (2.19) we can bring the potentials ~(5) and A -'(4) to the 
equivalent forms 

and 

~,(5) = 0 

1 O 3 f :  ~4 f :  l z~(4)(~/) m 6c 5 0t 3 2fay + 1 V~, 4pdV (2.31) 
120c s Ot 4 

where we have put V(a4R[Ot4)=(a4lOt4)VR. It  is clear that 

r i -  r = 4R2~ V~, R 4 = 4R3V~R = 4R 3 ]~ i -  r l 

..2".. 
and R - - - ~ = - ~ 3  with respect to ?. We therefore have from the above 
relations and equation (2.16) 

n ( 
LO)= 1 ~, qifi" 

i = 1  

1 ~ qi~i.__ ~ qj[?i_~12~ - - -  
12e 5 i= 1 Ot3 j= 1 

) 6C 5 ~t 3 2fdV + 30c 51 ~ t  4 2Rp dV 

1 0 ~ qj1~_612(6 - 
5 3t 

(2.32) 

The second term appearing on the fight side of the square bracket of the 
above equation gives 

j~=l qJff-~(R2R)= j=! ~ R37) (2.33) 



10 

and since 

~(R3~)=3R2t~+R3~I= -3R 2_R~___:___ ~'~" +R3 - ~ +~(~"  ~ ) R  

I~nyshm 

= - 3R~( /~ .~)  + R2[ - ~  + ~ ( ~ . ~ )  ] = - R 2 ~ -  2 R q ( / ~ ' ~ )  

differentiating for a fixed ~, it follows that 

0 j~lqj[~_Fjl2(Fi_~. ) =_~qj[R2~j+2R~(g.~j) ] (2.34) 
"~ j = l  

Hence, from equations (2.32), (2.34) we take 

- - ~  2 3 

L(5) = 1 ~ ~ qiqj~i.__[3R2~j+R~(~.6j)] iv~j (2.35) 
30c 5 i= 1 j =  1 Ot3 

where O/Ot with respect to 3" Now, since equation (2.35) has the form 

n 

1 i~l qivi'~(a)(~) (2.36) L(5)= ~c 

where the vector potential A-;(4)(F,.) is independent of 6i, one immediately 
sees that 

0L(5----~) = - --~--1 • qiqy R E [ 3 ~ + q ( ~ ' v j ) ]  (2.37) 
0~i 30C 5 j =  1 d t  

and therefore, one can thus obtain the Hamiltonian part H (5), i.e., 

H(5) = 
OL (5) 

i= 1 - ~ / " e l  - L0) = 0 (2.38) 

Here as a final result, we obtain the following expression for the Hamilto- 
nian of the system (Dionysiou and Vaiopoulos, 1979): 

H = H (~ + H (2) + H (4) + O(c -6)  (2.39) 

Equation (2.39) is the integral of energy, since the function H does not 
involve the time explicitly, therefore 

H= const. 

It should be pointed out, if H is a constant of motion it is not always the 
integral of energy (Goldstein, 1971). 
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Following Landau and Lifshitz (1975), the total radiation, in which charge- 
to-mass ratio is the same for all the moving charges, is given by 

180c 

i.e., the system emits electromagnetic waves by quadrupole radiation in 
unit time in all directions, where the tensor 

D~a=Y,q(3x~xp-8~l~r2), a, fl= 1,2,3 

is the quadrupole moment of the system. It should be noted here that we 
have a close agreement with a purely gravitational case of n-particle system 
(Dionysiou, 1977), i.e., equation (2.39). Also, the energy loss of the above 
gravitational system, when we average over the time, is given by 

. ~ ' 2  
45c 5 ~P 

i.e., the system emits gravitational waves by quadrupole radiation 
(Dionysiou, 1979). Comparing the two above results we see that the 
gravitational radiation is very much smaller than the electromagnetic 
radiation because of the smallness of the gravitational constant G. 

3. CONCLUSIONS 

Work has been done on this problem for a system of two identical 
charged particles to terms of fourth order in the past (Golubenkov and 
Smorodinskii, 1956; Landau and Lifshitz, 1975). Equation (2.27) for T/=2 
gives us the known result. The fifth-order terms in the expansion of the 
field lead to certain additional forces acting on the charges, not contained 
in the Lagrangian, since there is quadrupole radiation of the system in this 
approximation. Therefore, we can define a Lagrangian completely describ- 
ing the motion of charges only up to the fourth order in I /c .  

Up to now, we know the combined Lagrangian (the influence of the 
gravitational field on the electromagnetic one and vice versa) of second- 
order approximation (Ba~afiski, 1956, 1957; Barker and O'Connell, 1977, 
1978). We thus see the necessity of establishing a theory for the Lagrangian 
of the gravitational and electromagnetic field up to the fourth order 
(Dionysiou, 1980), since the Lagrangian yields a convenient starting point 
in discussing particle dynamics. Of course, if one uses only the case of the 
electrovacuum then the appropriate Lagrangian is simply the sum of 
the Lagrangians of the gravitational and the electromagnetic field 
(Papapetrou, 1974). 
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